Synthesis of Talaromycins A, B, C, and E

Raymond Baker,* Alastair L. Boyes, and Christopher J. Swain
Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex, CM2O 2QR

The synthesis of 2,2 -diethyl-5-ethynyl-1,3-dioxane (9) is reported in an overall yield of 27% from diethyl malonate. Addition of 5 -ethyl tetrahydropyran-2-one to the lithium anion of (9) gave the hydroxy ketoacetylene (10) which was converted in four steps to the olefinic spiroacetals (19) and (20), which were obtained in a ratio of $2: 1$. The individual olefinic spiroacetals (19) and (20) gave access to the (\pm)-talaromycins A and C, and B and E via a chlorohydration, reductive dechlorination, and deprotection sequence.

The talaromycins A (1) and B(2) were isolated from the fungus Talaromyces stipitatus which grows on woodshavings based animal feedstuffs, and were identified as avian toxins. ${ }^{1}$ Their activity arises through the blockade of outward potassium fluxes in smooth muscle which leads to muscle dysfunction. In a more detailed re-examination of extracts from Talaromyces stipitatus, ${ }^{2}$ Lynn et al isolated four more spiroacetals [talaromycins C-F (3)-(6)]. The talaromycins have received

A
(1)

B
(2)

D
(4)

E
(5)

C
(3)

F
(6)
considerable synthetic attention; four enantioselective syntheses of talaromycins A and B have been reported ${ }^{3}$ along with a number of other racemic syntheses of talaromycins A and B. ${ }^{4}$ More recently, two formal syntheses have been reported. ${ }^{5}$ Other synthetic studies towards spiroacetals have been reviewed by Kluge ${ }^{6}$ and Boivin. ${ }^{7}$ An important observation by Lynn et al. ${ }^{2}$ was the quantitative conversion of talaromycin A into talaromycin B under acid catalysis, reflecting the greater thermodynamic stability associated with all equatorally substituted anomerically stabilised spiroacetals. The greater accessibility of talaromycin B was apparent during the earlier syntheses; talaromycin A syntheses generally required more stringent control of the C-3 hydroxymethyl centre. We report the stereodivergent synthesis of (\pm)-talaromycins A, B, C, and E from common intermediates.

Syntheses

A retrosynthetic analysis (Scheme 1) indicated that the olefinic spiroacetal (7) could act as a common key intermediate for synthesis of (\pm)-talaromycins A, B, C, and E. Synthesis of (7)
required the availability of the precursor (10) followed by acid catalysed spirocyclisation. ${ }^{8}$ Formation of (10) was envisaged by addition of lactone (8) to the lithium anion of the protected diol (9).

(8)

(9)

(10)

Scheme 1.

The alkyne (9) was prepared in 27% overall yield from diethyl malonate (Scheme 2). Alcohol (14) was obtained by a synthesis which involved a modification of the route to 2-hydroxymethyl-propane-1,3-diol reported by Kaloustian et al. ${ }^{9}$ Oxidation of the alcohol (14) to the aldehyde (15) was most efficiently accomplished, in 96% yield, via a Swern oxidation ${ }^{10}$ [chromium based oxidising agents gave only moderate to poor yields of the aldehyde (15)]. The aldehyde (15) was transformed via the dibromo olefin (16) to the alkyne (9) in 64% yield using the procedure reported by Corey and Fuchs. ${ }^{11}$ Bates et al. ${ }^{12}$ have independently reported a similar synthesis of the analogous isopropylidene alkyne (17). The lactone (8) was prepared by a minor modification of the synthesis reported by Kuehne et al. ${ }^{13}$ (Scheme 3).

With access to gram quantities of the alkyne (9) and lactone (8) our attention was focussed on the synthesis of spiroacetal (7). Addition of the lactone (8) to the lithium anion of alkyne (9) gave the hydroxy ketoalkyne (10) in 79% yield; characteristic absorptions in the IR spectrum at $2220 \mathrm{~cm}^{-1}$ (α, β-unsaturated alkyne) and v $1680 \mathrm{~cm}^{-1}$ (α, β-unsaturated carbonyl) were observed. Partial hydrogenation to the Z-carbon double bond was required to permit spirocyclisation. Studies in these

(13)

(14)

(9)

(17)

Scheme 2. Reagents: i, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{HCHO}, 78 \% ;$ ii, p-TSA, $\mathrm{Et}_{2} \mathrm{CO}, 91 \%$; iii, $\mathrm{NaCl}, \mathrm{DMSO} \mathrm{H}_{2} \mathrm{O}, 79 \%$; iv, $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 86 \%$; v, oxalyl chloride, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, 96 \%$; vi, $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, 82 \%$; vii, 2 equiv. BuLi.

Scheme 3. Reagents: i, $\mathrm{CH}_{2}=\mathrm{CHCO}_{2} \mathrm{Me}, 82 \%$; ii, $\mathrm{NaBH}_{4}, \mathrm{MeOH}$; iii, $\mathrm{HCl}, 56 \%$.
laboratories ${ }^{14}$ have indicated that direct partial hydrogenation of similar ketoalkynes to ketoalkenes in the presence of Lindlar catalyst was frequently accompanied by over-reduction to the saturated ketone.

Consequently, the mixed methoxy ketals (18) were formed in 87% yield on treatment of the ketoalkyne (17) with dry methanol in the presence of Amberlyst 15 ion exchange resin. These conditions led to the cleavage of the 1,3-dioxane ring in (10) to release the 1,3 -diol functionality in the mixed methoxyketals (18) which were isolated as a 3:1 mixture at the anomeric centre (axial: equatorial, NMR). Partial hydrogenation of the alkyne (18) and acid catalysed spirocyclisation gave the olefinic spiroacetals ($7 \mathrm{a}, \mathrm{b}$) as a $2: 1$ mixture of inseparable diastereomers (pseudoaxial: pseudoequatorial hydroxymethyl group at $\mathrm{C}-3$). The equatorial orientation of the $\mathrm{C}-9$ ethyl group was assigned from the large coupling constants observed between $8-\mathrm{H}_{\mathrm{a}}$ and $9-\mathrm{H}_{\mathrm{a}}, J_{8 \mathrm{a}, 9 \mathrm{a}}=10.9 \mathrm{~Hz}$ for both (7a) and (7b). The signal corresponding to $8-\mathrm{H}_{\mathrm{a}}$ was a characteristic of subsequent spiroacetals reported in this paper. Separation of the diastereomeric spiroacetals (7a) and (7b) was required to allow a study of their selective hydration; but protection of the hydroxymethyl group at C-3 was required to prevent spiroacetal equilibration reactions. The t-butyl-dimethylsilyl group ${ }^{15}$ was chosen as the protecting group due to the mild
conditions required for its introduction, and the non-acidic deprotection conditions. Accordingly the t-BDMS ethers (19) and (20) were prepared in 84% combined yield after separation by careful flash chromatography.
The olefinic spiroacetal (19) underwent regioselective chlorohydration to give the diastereomeric chlorohydrins (21) and (22) in a $1: 4$ ratio, in 73% combined yield, after separation by flash chromatography. Similarly the olefinic spiroacetal (20) gave the trans-diequatorial and trans-diaxial chlorohydrins (23) and (24) which were obtained as colourless oils after separation by flash chromatography in a ratio of $1.4: 1$ in a combined yield of 60%. The trans-diaxial coupling between both $3-\mathrm{H}_{\mathrm{a}}$ and $5-\mathrm{H}_{\mathrm{a}}$ with $4-\mathrm{H}_{\mathrm{a}}$ in (23) was particularly significant in assigning the stereochemistry of the three contiguous centres C-3 to C-5. The stereochemistry assigned to the chlorohydrins (21)-(24) were based on analysis of the $360 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and 2D spectra. Both trans-diaxial chlorohydrins (22) and (24) exhibited sharp absorptions in their IR spectra, at 3480 and $3510 \mathrm{~cm}^{-1}$ respectively, indicative of an intra-molecular hydrogen bond between the axial $\mathrm{C}-4$ hydroxyl and the $\mathrm{C}-7$ in the adjacent tetrahydropyran ring, commonly observed in 4-hydroxy-1,7dioxaspiro[5.5]undecanes. The observed regioselectivity during chlorohydration was in accordance with literature precedence. ${ }^{16}$ Reductive dechlorination of the individual chlorohydrins (21)(24) gave the corresponding alcohols (25)-(28) as white crystalline solids in $60-80 \%$ yield on purification by flash chromatography (Scheme 4). Finally, deprotection of the t BDMS ethers (25)-(28) gave the talaromycins A, B, C, and E; all spectral detail was in accordance with published data. Talaromycin B was obtained as a white crystalline solid, m.p. $129.7-130.5^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane) (lit., $\left.127-128^{\circ} \mathrm{C}\right)$, whereas talaromycin A, C, and E were isolated as colourless oils.

Experimental

IR spectra were recorded on a Perkin-Elmer 298 spectrophotometer either as thin films between sodium chloride plates, as solutions in sodium chloride cells $(\mathbf{0} .1 \mathrm{~mm})$, or as Nujol mulls. ${ }^{1} \mathrm{H}$ NMR spectra were recorded either at 60 MHz on a Hitachi-Perkin-Elmer R-24B spectrometer or at 360 MHz on a Brucker AM 360 spectrometer. Tetramethylsilane (TMS) was used as a standard. ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 90.6 MHz on a Brucker AM 360 spectrometer. Mass spectra and accurate mass measurements were recorded on a Kratos MS30 spectrometer equipped with a Nova- 3 computer and DS 505 data system (Kratos) or a VG 7070 spectrometer. An ionisation potential of 70 eV was used and major fragmentations are given as percentages of base peak intensity (100%). Chemical ionisation mass spectra were obtained using ammonia as the reagent gas.

Melting points were measured on a Reichert Kofler hot stage melting point apparatus and are uncorrected. Kugelrohr distillations were performed using a Buchi Kugelrohr oven. The temperature of the oven was recorded as the boiling point of the compound. Flash chromatography was performed using Macherey-Nagel Kieselgel 60 ($230-400$ mesh) silica gel. Analytical TLC (thin layer chromatography) was performed on 0.25 mm precoated silica gel plates (Merck 60F UV ${ }_{254}$) and compounds were visualised by UV fluorescence, iodine vapour, or by treating with an aqueous solution of potassium permanganate or an acidic methanolic solution of vanillin. Light petroleum refers to the fraction (b.p. $40-60^{\circ} \mathrm{C}$) and ether refers to diethyl ether. Base washed glassware refers to glassware washed with saturated ethanolic potassium hydroxide solution followed by distilled water (to pH 7) and drying.

5,5-Bis(Ethoxycarbonyl)-2,2-diethyl-1,3-dioxane (12).-Toluene-p-sulphonic acid ($2.97 \mathrm{~g}, 16 \mathrm{mmol}$) and pentan-3-one $(47.4 \mathrm{~g}, 0.55 \mathrm{~mol})$ were added to a solution of diethyl

(9)
(10)
(18) (7a, b)

($\mathrm{P}=\mathrm{TBDMS}$)

(20)

(1)

(3)

(2)

(5)

Scheme 4. Reagents: i, BuLi, THF, $-78^{\circ} \mathrm{C}$, (8), 78%; ii, MeOH , Amberlyst $15,100 \%$; iii, $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{CaCO}_{3} / \mathrm{Pb}, \mathrm{MeOH}$; iv, $\mathrm{D}, \mathrm{L}-\mathrm{Camphorsulphonic} \mathrm{acid}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 78 \%$; v, t-BDMSCl, Imidazole, DMF, 84%; vi, t-BuOCl, acetone, $\mathrm{H}_{2} \mathrm{O}$; vii, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, Toluene; viii, $\mathrm{Bu} \mathrm{u}_{4} \mathrm{NF}, \mathrm{THF}$.
bis(hydroxymethyl)malonate (11) ${ }^{17}$ ($110 \mathrm{~g}, 0.5 \mathrm{~mol}$) in light petroleum (520 ml) and heated to reflux under a Dean and Stark head for 15 h . Azeotropic removal of water (9 ml) and TLC analysis indicated completion of the reaction. On cooling to room temperature the reaction mixture was concentrated to 150 ml (approximately) and diluted with ether (400 ml). The organic phase was washed successively with saturated sodium hydrogen carbonate (180 ml) and brine (180 ml) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave 5,5- bis(ethoxy-carbonyl)-2,2-diethyl-1,3-dioxane (12) as an oil ($144 \mathrm{~g}, 91 \%$) sufficiently pure for use in the subsequent reaction. An analytical sample was prepared by flash chromatography ($\mathrm{Et}_{2} \mathrm{O}$-light petroleum, 3:7) followed by Kugelrohr distillation, b.p. $74{ }^{\circ} \mathrm{C}$ at 0.15 mmHg (Found: $\mathrm{C}, 58.05 ; \mathrm{H}, 8.30 . \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{6}$ requires C, $58.32 ; \mathrm{H}, 8.39 \%$), $\mathrm{v}_{\max }($ (thin film) $2980,2950,2890$, $1750(\mathrm{C}=\mathrm{O}), 1480,1450,1260$, and $1110 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 4.24(4 \mathrm{H}, \mathrm{s}, 4-\mathrm{H}$ and $6-\mathrm{H}), 4.2\left(4 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$, $1.74\left(4 \mathrm{H}, \mathrm{q}, J, 7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\right), 1.25\left(6 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$ and $0.84\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\right.$); m / z (EI) (Found: $M^{+}-\mathrm{Et}$, $259.1182 . \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{6}$ requires 259.1157); 259 ($\mathrm{M}^{+}-\mathrm{Et}, 76 \%$), 243 (6), 173 (21), 127 (35), 59 (46), and 57 (100).

2,2-Diethyl-5-ethoxycarbonyl-1,3-dioxane (13).-Sodium chloride ($26.2 \mathrm{~g}, 0.46 \mathrm{~mol}$) and water ($16 \mathrm{ml}, 0.89 \mathrm{~mol}$) were
added to a solution of 5,5-bis(ethoxycarbonyl)-2,2-diethyl-1,3dioxane (12) ($128.6 \mathrm{~g}, 0.46 \mathrm{~mol}$) in dimethyl sulphoxide (712 ml) and the reaction heated to gentle reflux for 19 h . On cooling to room temperature the reaction was poured into brine (1.5 l), and extracted with ether ($4 \times 250 \mathrm{ml}$). The combined organic phase was washed with water ($3 \times 100 \mathrm{ml}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave 2,2-diethyl-5-ethoxycarbonyl-1,3-dioxane (13) ($75.6 \mathrm{~g}, 79 \%$) as an oil, b.p. $75{ }^{\circ} \mathrm{C}$ at 0.5 mmHg (Found: $\mathrm{C}, 61.2 ; \mathrm{H}, 9.35 . \mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4}$ requires C, 61.1; H, 9.34\%); $v_{\max }$ (thin film) 2980, $2950,2890,1735$ $(\mathrm{C}=\mathrm{O}), 1470,1290,1160,1090,1040$, and $900 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(60$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 4.32-3.95 ($6 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 6-\mathrm{H}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), $2.72(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.95-1.5\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\right), 1.25(3 \mathrm{H}, \mathrm{t}, J 7$ $\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), and $0.87\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\right) ; \mathrm{m} / \mathrm{z}$ (EI) (Found: $M^{+}-\mathrm{Et}, 187.0960 . \mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{4}$ requires 187.0970), 187 (64%), 171 (3.5), 142 (6), 113 (8), and 57 (100).

2,2-Diethyl-5-hydroxymethyl-1,3-dioxane (14).-A solution of 2,2-diethyl-5-ethoxycarbonyl-1,3-dioxane (13) $(42.6 \mathrm{~g}, 197$ mmol) in dry ether (460 ml) was added to a suspension of lithium aluminium hydride ($2.3 \mathrm{~g}, 61 \mathrm{mmol}$) in dry ether (460 $\mathrm{ml})$ under nitrogen at such a rate as to maintain a gentle reflux. On completion of the addition the reaction was maintained at a gentle reflux for 2 h . The reaction was cooled in an ice-bath and
portions of water (2.3 ml), sodium hydroxide ($2.3 \mathrm{ml} ; 15 \%$) and water (6.9 ml) were added carefully in a dropwise manner. Stirring was continued until a white precipitate was formed, the reaction mixture was filtered, and the residue washed with ether ($2 \times 100 \mathrm{ml}$). The combined organic phase was concentrated under reduced pressure to give 2,2-diethyl-5-hydroxymethyl-1,3-dioxane (14) as an oil ($29.5 \mathrm{~g}, 86 \%$), b.p. $60^{\circ} \mathrm{C}$ at 0.5 mmHg ; $v_{\max }($ thin film) $3420(\mathrm{OH}), 2980,2950,2880,1460,1160$, 1090,1040 , and $900 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.12-3.52(6 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}, 6-\mathrm{H}$ and $\left.\mathrm{CHCH}_{2} \mathrm{OH}\right), 2.3\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 1.96-1.5$ ($5 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}$), and $0.83(6 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}$); m / z (EI) (Found: $M^{+}-\mathrm{Et}$, 145.0861. $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}_{3}$ requires 145.0865), 145 (53%), 87 (12), and 57 (100).

2,2-Diethyl-5-formyl-1,3-dioxane (15).-Dimethyl sulphoxide $(12.4 \mathrm{ml}, 161 \mathrm{mmol})$ in dry dichloromethane (36.5 ml) was added to a vigorously stirred solution of oxalyl chloride (8.05 $\mathrm{ml}, 80.3 \mathrm{mmol})$ in dry dichloromethane $(183 \mathrm{ml})$ at -70 to $-60^{\circ} \mathrm{C}$ under nitrogen over a period of 12 min and stirred for a further 4 min . The alcohol, 2,2-diethyl-5-hydroxymethyl-1,3dioxane (14) ($12.7 \mathrm{~g}, 73 \mathrm{mmol}$) in dry dichloromethane (73 ml) was added dropwise and the reaction mixture stirred for 0.5 h at -70 to $-60^{\circ} \mathrm{C}$ during which a white opaque solution formed. Dry triethylamine (51 ml) was added dropwise and the reaction mixture stirred for 10 min before warming to room temperature. Water (350 ml) and dichloromethane $(350 \mathrm{ml})$ were added to the reaction mixture and the organic phase separated and the aqueous phase extracted with dichloromethane ($1 \times 100 \mathrm{ml}$). The combined organic phase was washed with water (2×250 ml), brine ($1 \times 250 \mathrm{ml}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave 2,2-diethyl-5-formyl-1,3-dioxane $(15)(12.1 \mathrm{~g}, 96 \%)$ as an oil, b.p. $60-65^{\circ} \mathrm{C}$ at $5 \mathrm{mmHg}, v_{\text {max }} 2980$, $2950,2880,1725(\mathrm{C}=\mathrm{O}), 1465,1360,1240,1160$, and 900 $\mathrm{cm}^{-1}, \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.82(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 3.85(4 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 3.9 and $12 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{e}}$ and $\left.6-\mathrm{H}_{\mathrm{e}}\right), 3.72(4 \mathrm{H}, \mathrm{dd}, J 3.9$ and $12 \mathrm{~Hz}, 4-$ H_{a} and $\left.6-\mathrm{H}_{\mathrm{a}}\right), 2.23[1 \mathrm{H}, \mathrm{m}(5), J 3.9 \mathrm{~Hz}, 5-\mathrm{H}], 1.74(2 \mathrm{H}, \mathrm{q}, J 7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\right), 1.53\left(2 \mathrm{H}, \mathrm{q}, J 7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{C} \mathrm{H}_{2} \mathrm{C}\right), 0.78(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\right)$, and $0.76\left(3 \mathrm{H}, \mathrm{t}, J 7.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\right)$; $\delta_{\mathrm{C}}\left(90.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 202.3$ (d, CHO), 101.5 (s, C-2), 58.4 (t, C4 and $\mathrm{C}-6$), 46.4 (d, C-5), 27.9 (t, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}$), 23.7 (t , $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}$), $7.6\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{C}\right)$, and $7.0\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\right)$.

5-(2,2-Dibromoethenyl)-2,2-diethyl-1,3-dioxane

(16).-A solution of carbon tetrabromide ($51.4 \mathrm{~g}, 155 \mathrm{mmol}$) in dry dichloromethane (232 ml) was added dropwise to a solution of triphenylphosphine ($81.25 \mathrm{~g}, 310 \mathrm{mmol}$) in dry dichloromethane (282 ml) cooled to $0-5^{\circ} \mathrm{C}$ under nitrogen. The reaction mixture was stirred for 20 min at $0.5^{\circ} \mathrm{C}$ and then cooled to $-20^{\circ} \mathrm{C}$. A solution of 2,2-diethyl-5-formyl-1,3-dioxane (15) ($12.1 \mathrm{~g}, 70.4$ mmol) in dry dichloromethane (282 ml) was added dropwise to the reaction mixture and stirred at $-20^{\circ} \mathrm{C}$ for 40 min . The reaction mixture was poured into light petroleum $(800 \mathrm{ml})$ and filtered through a pad of Celite. The solid residue was dissolved in dichloromethane (100 ml) and poured into light petroleum $(400 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ and refiltered. The filtrate was concentrated under reduced pressure to give a yellow oil which was purified by dry column chromatography to yield 5-(2,2-dibromoethenyl)-2,2-diethyl-1,3-dioxane (16) as an oil ($19.04 \mathrm{~g}, 82 \%$); $v_{\text {max }}$ (thin film) $2980,2950,2880,1610$ (C=C), $1460,1160,1090,900$, and $800 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.5(1 \mathrm{H}, \mathrm{d}, J 10.2 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CBr}_{2}$), 4.1-3.5 ($4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $\left.6-\mathrm{H}\right), 2.64(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 1.7$ $\left(4 \mathrm{H}, \mathrm{q}, J 7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, and $0.85\left(6 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$.

2,2-Diethyl-5-ethynyl-1,3-dioxane (9).-A solution of butyllithium in hexanes ($91.8 \mathrm{ml}, 128 \mathrm{mmol}$) was added dropwise to a solution of 5-(2,2-dibromoethenyl)-2,2-diethyl-1,3-dioxane (16) $(19 \mathrm{~g}, 58 \mathrm{mmol})$ in dry tetrahydrofuran (580 ml) at $-78^{\circ} \mathrm{C}$ under nitrogen, and stirred at this temperature for 1.5 h . The
reaction was quenched by the addition of water $(250 \mathrm{ml})$ and the organic phase separated. The aqueous phase was extracted with ether ($2 \times 100 \mathrm{ml}$) and the combined organic phase washed with brine $(2 \times 200 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave 2,2-diethyl-5-ethynyl-1,3-dioxane (9) $(7.6 \mathrm{~g}, 78 \%)$ as an oil, b.p. $40-45^{\circ} \mathrm{C}$ at 2 mmHg (Found: C , 71.1; $\mathrm{H}, 9.55 . \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 71.4 ; \mathrm{H}, 9.59 \%$); $\mathrm{v}_{\text {max }}$ (thin film) $3320(=\mathrm{CH}), 3270,2980,2960,2790,2120(\mathrm{C}=\mathrm{C}), 1470$, $1165,1140,1090$, and $900 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.82(2$ $\mathrm{H}, \mathrm{dd}, J 5$ and $11.6 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{e}}$ and $\left.6-\mathrm{H}_{\mathrm{e}}\right), 3.73(2 \mathrm{H}, \mathrm{t}, J 11.3 \mathrm{~Hz}, 4-$ H_{a} and $\left.6-\mathrm{H}_{\mathrm{a}}\right), 2.72(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.07(1 \mathrm{H}, \mathrm{d}, J 2.6 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{CH})$, $1.78\left(2 \mathrm{H}, \mathrm{q}, J 7.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\right), 1.54(2 \mathrm{H}, \mathrm{q}, J 7.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\right), 0.82\left(3 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}\right)$, and $0.80(3 \mathrm{H}, \mathrm{t}$, $J 7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}$); $\delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 101.1(\mathrm{OCO}), 80.9$ (s, $C \equiv \mathrm{CH}$), $71.4(\mathrm{~d}, \mathrm{C} \equiv C \mathrm{H}), 62.9(\mathrm{t}, \mathrm{C}-4$ and $\mathrm{C}-6), 29.8$ (t, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}$), 27.8 (d, C-5), 21.6 (t, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}$), 7.8 (q , $C H_{3} \mathrm{CH}_{2}$), and 7.0 (q, $\mathrm{CH}_{3} \mathrm{CH}_{2}$); m / z (EI) (Found: $M^{+}-\mathrm{Et}$ 139.0761. $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2}$ requires 139.0759), 139(52\%), 104(18), 78(12), 77(10), and 57(100).

2,2-Diethyl-5-(6-ethyl-7-hydroxy-3-oxohex-1-yne)-1,3-dioxane (10.-A solution of butyl-lithium in hexanes $(3.17 \mathrm{ml}, 5.2$ mmol) was added dropwise to a solution of 2,2 -diethyl-5-ethynyl-1,3-dioxane (9) ($479.5 \mathrm{mg}, 4.7 \mathrm{mmol}$) in dry tetrahydrofuran $(100 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$ under nitrogen and the reaction mixture stirred at this temperature for 2 h . A solution of 5 -ethyltetrahydro-2-pyrone ${ }^{13}$ (8) ($602 \mathrm{mg}, 4.7 \mathrm{mmol}$) in dry tetrahydrofuran (10 ml) was added rapidly and the reaction stirred at $-78^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched by the addition of a saturated solution of sodium dihydrogen orthophosphate (30 ml) and warmed to room temperature. The organic phase was diluted with ethyl acetate (50 ml) and separated from the aqueous layer which was extracted with ethyl acetate ($2 \times 50 \mathrm{ml}$). The combined organic phase was washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration at reduced pressure gave an oil which was purified by flash column chromatography (ether-light petroleum, 9:11) to yield 2,2-diethyl-5-(6-ethyl-7-hydroxy-3-oxohex-1-ynyl)1,3-dioxane (10) ($1.1 \mathrm{~g}, 79 \%$) as an oil, b.p. $117^{\circ} \mathrm{C}$ at 0.06 mmHg ; (Found: C, 69.1; $\mathrm{H}, 9.4 . \mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\mathrm{C}, 68.9 ; \mathrm{H}, 9.5 \%$); $\mathrm{v}_{\text {max }}$ (thin film) $3420(\mathrm{OH}), 2$ 980, 2 950, 2 890, $2220(\mathrm{C} \equiv \mathrm{C})$ conj., $1680(\mathrm{C}=\mathrm{O})$ conj., $1470,1165,1140,1090$, and $900 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(360 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), 3.95-3.8\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.56-3.42(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 2.65-2.5(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and OH$), 1.88-1.80(2 \mathrm{H}$, $\left.\mathrm{m}, 4^{\prime}-\mathrm{H}\right), 1.7-1.55\left(4 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right)$, $1.42-1.15(4 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CH}_{3} \mathrm{CH}_{2}$), and $0.92-0.82\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; m / z$ (EI) (Found: $M^{+}-\mathrm{Et}, 267.1577 . \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{4}$ requires 267.1596), 267 ($M^{+}-E t, 100 \%$), 181 (16), 163(9), 111(11), and 94(23).

2-(4-Hydroxy-3-hydroxymethylbut-1-ynyl)-5-ethyl-2-methoxytetrahydropyran (18).-The acetylenic ketone (10) (1.01 g, 3.4 mmol) and Amberlyst 15 ion exchange resin (50 mg) were stirred in dry methanol (100 ml) under nitrogen for 2.5 h . The reaction mixture was filtered through a pad of Celite and potassium hydrogen carbonate ($1: 1, \mathrm{v} / \mathrm{v}$) and the pad was washed with dry methanol ($2 \times 30 \mathrm{ml}$). Concentration under reduced pressure gave (2α)- and (2β)-anomers of 2 -(4^{\prime}-hydroxy-3'-hydroxymethylbut- 1^{\prime}-ynyl)-5-ethyl-2-methoxytetrahydropyran (18), ($674 \mathrm{mg}, 82 \%$) as a mixture of anomers ($1: 3 \mathrm{by}$ NMR) which could be separated by flash chromatography ($3: 2$ to 4:1 ethyl acetate-light petroleum); (18a) $v_{\max }$ (thin film) 3620 and $3440(\mathrm{OH}), 2980,2$ 940, $2880,2260(\mathrm{C}=\mathrm{C}), 1465,1240$, 1160,1050 , and $900 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 3.85-3.7(5 \mathrm{H}$, br m, 6- H_{e} and $\left.2 \times \mathrm{CH}_{2} \mathrm{OH}\right) 3.48-3.4\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{a}}\right), 3.42(3 \mathrm{H}$, $\mathrm{s}, \mathrm{MeO}), 3.15\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CH}_{2} \mathrm{OH}\right), 2.8(1 \mathrm{H}$, quintet, $J 5.3$ $\left.\mathrm{Hz}, \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}\right), 1.94-182\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{e}}\right.$ and $\left.4-\mathrm{H}_{\mathrm{e}}\right), 1.66(1$ H , ddd, $J 13.4,10.3$ and $3.3 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{a}}$), $1.36-1.20(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$), and $0.88\left(3 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}-\right) ; \delta_{\mathrm{C}}(90.6 \mathrm{MHz}$,
CDCl_{3}) 96.42 (s, C-2), 84.68 (s, C-5), 80.46 (s, C-6), 67.78 (t, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 63.26\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 51.09\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 37.15(\mathrm{~d}, \mathrm{CH}), 35.8$ (d, CH), 35.1 (t, CH_{2}), $25.72\left(\mathrm{~d}, \mathrm{CH}_{2}\right), 24.04\left(\mathrm{~d}, \mathrm{CH}_{2}\right)$, and 11.47 (t, C-11); m / z (EI) (Found: $M^{+}-\mathrm{OMe}$ 211.1318. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{3}$ requires 211.1334), 211 ($M^{+}-\mathrm{OMe}, 35 \%$), 167(50), 156(49), 133(12), 127(88), 111(22), and 108(100).
(18b) (C, 64.60; $\mathrm{H}, 9.03 . \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4}$ requires C, 64.44; $\mathrm{H}, 9.15$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3620$ and $3450(\mathrm{OH}), 3020,2980,2950,2890$, $2250(\mathrm{C}=\mathrm{C}), 1470,1150,1080,1040$, and $900 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(360$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, $3.75\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CH}_{2} \mathrm{OH}\right), 3.62(4 \mathrm{H}, \mathrm{br} \mathrm{s}, 10-$ H and $11-\mathrm{H}), 3.5\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{e}}\right), 3.22(\mathbf{3 H}, \mathrm{~s}, \mathrm{OMe}), 3.15(1 \mathrm{H}, \mathrm{t}, J$ $\left.10.9 \mathrm{~Hz}, 6-\mathrm{H}_{\mathrm{a}}\right), 2.67(1 \mathrm{H}$, quintet, $J 5.8 \mathrm{~Hz}, 9-\mathrm{H}), 1.87(1 \mathrm{H}, \mathrm{dt}, J$ 10.6 and $3.6 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{e}}$), $1.76\left(1 \mathrm{H}\right.$, td, $J 13.0$ and $\left.4.4 \mathrm{~Hz}, 3-\mathrm{H}_{\mathrm{a}}\right)$, 1.56-1.52 (1 H, m, 4-He), 1.43-1.35 ($\left.1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{a}}\right), 1.31(1 \mathrm{H}, \mathrm{qd}$, $J 12$ and $\left.4.2 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{a}}\right), 1.15-0.96(2 \mathrm{H}, \mathrm{m}, 13-\mathrm{H})$, and $0.78(3 \mathrm{H}, \mathrm{t}$, $J 7.4 \mathrm{~Hz}, 14-\mathrm{H}) ; \delta_{\mathrm{c}}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 94.25(\mathrm{~s}, \mathrm{C}-2), 82.49(\mathrm{~s}$, C-7) 81.38 (s, C-8), $65.95\left(\mathrm{t}, \mathrm{CH}_{2}\right), 62.6$ (t, CH_{2}), 50.11 (q , OCH_{3}), 37.0 (d, CH), 36.26 (t, CH2), 35.96 (d, CH), 24.87 (t, CH_{2}), $24.57\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, and $10.81\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; m / z$ (EI) (Found: $M^{+}-\mathrm{OMe}$ 211.1322. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{3}$ requires 211.1334), 211 (M^{+}- OMe, 83\%), 181(17), 167(43), 156(58), 133(17), 127(100), 111(23), and 108(91).
$\left(3 S^{*}, 6 R^{*}, 9 R^{*}\right)$ - and $\left(3 R^{*}, 6 R^{*}, 9 \mathrm{R}^{*}\right)-9-$ Ethyl-3-hydroxy-methyl-1,7-dioxaspiro[5.5]undec-4-ene (7a,b).-A suspension of acetylenic acetals (18a,b) $(635 \mathrm{mg}, 2.62 \mathrm{mmol})$, Lindlar's catalyst $\left(52 \mathrm{mg}, \mathrm{Pd} / \mathrm{CaCO}_{3} / \mathrm{Pb}\right)$ and triethylamine $(0.18 \mathrm{ml}, 1.3 \mathrm{mmol})$ in dry methanol (27 ml) was hydrogenated at atmospheric pressure for 3 h . The reaction was filtered through a pad of Celite and the residues washed with methanol $(2 \times 20 \mathrm{ml})$. Concentration under reduced pressure gave an oil which was dried $(0.08 \mathrm{mmHg}, 13 \mathrm{~h})$. Partial spirocyclisation of the crude product was observed during the course of running routine NMR spectra and the crude product was consequently used in the next reaction without any attempt to purify this intermediate. The olefin ($636 \mathrm{mg}, 2.62 \mathrm{mmol}$) was dissolved in dry dichloromethane $(60 \mathrm{ml})$ and stirred in the presence of $\mathrm{D}, \mathrm{L}-$ camphorsulphonic acid ($20 \mathrm{mg}, 0.087 \mathrm{mmol}$) under nitrogen for 2.5 h . The reaction was filtered through a pad of Celite and potassium hydrogen carbonate ($1: 1, \mathrm{v} / \mathrm{v}$) and the pad was washed with dichloromethane ($3 \times 20 \mathrm{ml}$). The combined organic phase was concentrated under reduced pressure and the resulting oil was purified by flash chromatography (6.5:3.5, ethyl acetate-light petroleum) to give a $1: 2$ mixture of ($\mathrm{S} S^{*}, 6 R^{*}, 9 R^{*}$)- and ($3 R^{*}, 6 R^{*}, 9 R^{*}$)-9-ethyl-3-hydroxymethyl-1,7-dioxaspiro[5.5]undec-4-ene (7a,b) as an oil, b.p. $62-64^{\circ} \mathrm{C}$ at $0.04 \mathrm{mmHg}(434 \mathrm{mg}, 78 \%), v_{\max }($ thin film) $3440(\mathrm{OH})$, 3 050, 2970,2 940, 2880,1660 (C=C), $1465,1285,1245$, $1170,1090,1020,910$, and $870 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, 5.85-5.82 and $5.9(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 5.74-5.69(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.02$ and 3.97-3.94 (1 H, m, CH2O), 3.88-3.74 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), 3.65-3.58 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right.$ including $\left.8-\mathrm{H}_{\mathrm{e}}\right), 3.41\left(1 \mathrm{H}, \mathrm{t}, J 10.9 \mathrm{~Hz}, 8-\mathrm{H}_{\mathrm{a}}\right)$, 2.62-2.56 and 2.14-2.0 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 1.75-1.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 1.74-1.60 ($3 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{a}}, 10-\mathrm{H}_{\mathrm{e}}$ and $11 \mathrm{H}_{\mathrm{e}}$), 1.49-1.40 ($2 \mathrm{H}, \mathrm{m}, 9-$ H_{a} and 11-Ha), 0.99-0.82 $(2 \mathrm{H}, \mathrm{m}, 13-\mathrm{H})$, and $0.89(3 \mathrm{H}, \mathrm{t}, J 7.4$ $\mathrm{Hz}, 14-\mathrm{H})$; $m / z(\mathrm{EI})$ (Found: $M^{+}, 212.1390 \mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $212.1412), 212\left(M^{+}, 4 \%\right), 181(12), 143(16), 129(100), 126(92)$, and 96(47).
($3 S^{*}, 6 R^{*}, 9 R^{*}$)- and ($\left.3 R^{*}, 6 R^{*}, 9 R^{*}\right)-3-[(t-$ Butyldimethyl $)$ -siloxy]methyl-9-ethyl-1,7-dioxaspiro [5.5]undec-4-ene (20) and (19).-Imidazole ($802 \mathrm{mg}, 11.8 \mathrm{mmol}$) and t-butyldimethylsilyl chloride ($887 \mathrm{mg}, 5.9 \mathrm{mmol}$) were added to a solution of the olefinic spiroketals $(7 a, b)(1.0 \mathrm{~g}, 4.7 \mathrm{mmol})$ in dry dimethylformamide (5 ml) and stirred under nitrogen at room temperature for 2 h . The reaction mixture was concentrated under reduced pressure and dissolved in ether (100 ml). The organic phase was washed with dilute $(0.1 \mathrm{~m})$ hydrochloric acid $(1 \times 20$
ml), saturated sodium hydrogen carbonate ($2 \times 20 \mathrm{ml}$), and brine ($1 \times 20 \mathrm{ml}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave an oil which was purified by flash chromatography (ether-light petroleum; $1: 19 \longrightarrow 1: 9, \mathrm{v} / \mathrm{v}$) to yield $\left(3 S^{*}, 6 R^{*}, \quad 9 R^{*}\right)$ - and ($\left.3 R^{*}, 6 R^{*}, 9 R^{*}\right)$-3-[(t-butyldi-methyl)siloxy]methyl-9-ethyl-1,7-dioxaspiro[5.5]undec-4-ene as colourless oils (20) and (19) [1.29 g, 84\% (combined yield)]: (20) $R_{\mathrm{f}} 0.18$ (1:19, ether-light petroleum), b.p. $97-99{ }^{\circ} \mathrm{C}$ at 0.2 mmHg (Found: $\mathrm{C}, 66.1 ; \mathrm{H}, 10.5 . \mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{3}$ Si requires C, 66.2; $\mathrm{H}, 10.5 \%$); $v_{\text {max }}($ thin film) $3050(\mathrm{CH})$ vinylic, 2970,2940 , $2860,1660(\mathrm{C}=\mathrm{C}), 1475,1465,1$ 260, 1 085, 1 020, 910, 840, and $780 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.77(1 \mathrm{H}, \mathrm{d}, J 10 \mathrm{~Hz}, 4-\mathrm{H})$, $5.64(1 \mathrm{H}, \mathrm{dd}, J 2.6$ and $10.4 \mathrm{~Hz}, 5-\mathrm{H}), 3.84(1 \mathrm{H}, \mathrm{dd}, J 5.7$ and 11 $\mathrm{Hz}, 12-\mathrm{H}), 3.57-3.5(3 \mathrm{H}, \mathrm{m}, 2 \times 8-\mathrm{H}$ and $12-\mathrm{H}), 3.45-3.38(2 \mathrm{H}$, $\mathrm{m}, 2 \times 2-\mathrm{H}), 2.66-2.54\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{a}}\right), 1.74-1.55\left(3 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{e}}\right.$, $\left.10-\mathrm{H}_{\mathrm{e}}, 10-\mathrm{H}_{\mathrm{a}}\right), 1.55-1.38\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.11-\mathrm{H}_{\mathrm{a}}\right), 1.27-1.08(2 \mathrm{H}$, $\left.\mathrm{m}, 3-\mathrm{H}_{\mathrm{a}}\right), 1.74-1.55(3 \mathrm{H}, \mathrm{m}, 11-\mathrm{m}, 2 \times 13-\mathrm{H}), 0.88(3 \mathrm{H}, \mathrm{t}, J 7.2$ $\mathrm{Hz}, 2 \times 14-\mathrm{H}), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{l}}\right)$, and $0.02\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3} \mathrm{Si}\right)$; $\delta_{\mathrm{C}}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), 131.4 (d, C-5), 129.5 (d, C-4), 93.7 (s, $4 \times \mathrm{C}), 66.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 64.3\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 61.9\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 37.9(\mathrm{~d}$, CH), 36.8 (d, CH), $35.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 26.0\left(\mathrm{q}, \mathrm{CH}_{3}\right), 25.5\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, $25.1\left(\mathrm{t}, \mathrm{CH}_{2}\right), 11.2\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, and $-5.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
(19) $R_{\mathrm{f}} 0.13$ (ether-light petroleum, 1:19), b.p. $97-99^{\circ} \mathrm{C}$ at 0.2 mmHg ; (Found: $\mathrm{C}, 66.1 ; \mathrm{H}, 10.5 . \mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{C}, 66.2$; $\mathrm{H}, 10.5 \%$); $v_{\text {max }}$ (thin film), $3040(\mathrm{CH})$ vinylic, 2 980, 2940,2860 , $1660(\mathrm{C}=\mathrm{C}), 1470,1460,1255,1100,1090,1030,840$, and 770 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.88(1 \mathrm{H}, \mathrm{dd}, J 10.1$ and 1.2 Hz , 4-H), 5.66 ($1 \mathrm{H}, \mathrm{d}, J 10.1 \mathrm{~Hz}, 5-\mathrm{H}$), 3.92 (1 H , dd, J 3.5 and 11.3 $\left.\mathrm{Hz}, 2-\mathrm{H}_{\mathrm{a}}\right), 3.78\left(1 \mathrm{H}, \mathrm{d}, J 11.3 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{e}}\right), 3.56(1 \mathrm{H}, \mathrm{dd}, J 2.9$ and $10.9 \mathrm{~Hz}, 8-\mathrm{H}_{\mathrm{e}}$), $3.55(2 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, 12-\mathrm{H}), 3.45(1 \mathrm{H}, \mathrm{t}, J 10.9$ $\left.\mathrm{Hz}, 8-\mathrm{H}_{\mathrm{a}}\right), 2.04-1.97\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{e}}\right), 1.7-1.5\left(3 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{e}}\right.$, $11-\mathrm{H}_{\mathrm{e}}$ and $\left.10-\mathrm{H}_{\mathrm{a}}\right), 1.45-1.42\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.11-\mathrm{H}_{\mathrm{a}}\right), 1.24-1.08$ $(2 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.88(3 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, 14-\mathrm{H})$, and $0.04\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3} \mathrm{Si}\right) ; \delta_{\mathrm{c}}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 132.2(\mathrm{~d}, \mathrm{C}-5)$, 128.6 (d, C-4), 92.8 ($\mathrm{s}, \mathrm{C}-6$), 65.9 (t, $\mathrm{CH}_{2} \mathrm{O}$), 63.4 (t, $\mathrm{CH}_{2} \mathrm{O}$), 58.5 (t, CH ${ }_{2} \mathrm{O}$), 37.7 (d, CH), 36.8 (d, CH), 35.1 (t, CH_{2}), 26.1 (q , $\left.\mathrm{CH}_{3}\right), 25.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 25.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 18.4\left(\mathrm{~s}, 4^{\prime}-\mathrm{C}\right), 11.2\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, and $-5.3\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{Si}\right) ; m / z$ [Found: $269.1579\left(M^{+}-\mathrm{Bu}^{\mathrm{l}}\right)$. $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{Si}$ requires 269.1573], 269 (7.1\%), 183(16), 159(8), 105(13), 91(87), and 77(18).
$\left(3 R^{*}, 4 S^{*}, 5 S^{*}, 6 R^{*}, 9 R^{*}\right)$ - and ($\left.3 R^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}, 9 R^{*}\right)-3-[(t-$ Butyldimethyl) siloxy]methyl-5-chloro-9-ethyl-1,7-dioxaspiro-[5.5]undecan-4-ol (22) and (21).-To the olefinic spiroketal ($3 R^{*}, 6 R^{*}, 9 R^{*}$)-3-[(t-butyldimethyl)siloxy]methyl-9-ethyl-1,7dioxaspiro[5.5] undec-4-ene (19) ($408 \mathrm{mg}, 1.25 \mathrm{mmol}$) in aqueous acetone (33 ml) $(1: 10, \mathrm{v} / \mathrm{v})$ was added t -butyl hypochlorite ($450 \mathrm{mg}, 4.9 \mathrm{mmol}$) and the reaction stirred at room temperature for 5.5 h . The reaction mixture was concentrated at reduced pressure and taken up in ether $(100 \mathrm{ml})$. The organic phase was washed with water ($2 \times 15 \mathrm{ml}$), the aqueous phase being backwashed with ether (20 ml) and the combined organic phase washed with brine (25 ml) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave the diastereoisomeric pair of chlorohydrins ($3 R^{*}, 4 S^{*}, 5 S^{*}, 6 R^{*}$, $9 R^{*}$) and ($3 R^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}, 9 R^{*}$)-3-[(t-butyldimethyl)siloxy]-methyl-5-chloro-9-ethyl-1,7-dioxaspiro[5.5]undecan-4-ol (22) and (21) which were purified by flash chromatography (etherlight petroleum, $1: 4$) to give (21) $\left(71 \mathrm{mg}, 14 \%\right.$); $R_{\mathrm{f}} 0.28, v_{\text {max }}$ (thin film) $3480(\mathrm{OH}), 2970,2940,2890,2860,1465,1260,1100$, 1050,1000 , and $840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.19(1 \mathrm{H}, \mathrm{dt}, J$ 5.4 and $\left.10.8 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{a}}\right), 4.07\left(1 \mathrm{H}, \mathrm{dd}, J 7.0\right.$ and $\left.10.1 \mathrm{~Hz}, 12^{\prime}-\mathrm{H}\right)$, $3.79(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and $10.1 \mathrm{~Hz}, 12-\mathrm{H}), 3.72-3.64\left(4 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{e}}\right.$, $2-\mathrm{H}_{\mathrm{c}}$ and $5-\mathrm{H}_{\mathrm{a}}$), $3.3(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 4.5 \mathrm{~Hz} \mathrm{OH}), 3.22(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.9$ $\left.\mathrm{Hz}, 8-\mathrm{H}_{\mathrm{a}}\right), 2.28\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{e}}\right), 2.13(1 \mathrm{H}, \mathrm{dt}, J 4.8$ and 13.3 Hz , $\left.11-\mathrm{H}_{\mathrm{a}}\right), 1.67\left(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{a}}\right), 1.52\left(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{c}}\right.$ and $\left.10-\mathrm{H}_{\mathrm{c}}\right), 1.39$ $\left(1 \mathrm{H}, \mathrm{qd}, J 4.1\right.$ and $\left.12.2 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{a}}\right), 1.19-1.11(2 \mathrm{H}, \mathrm{m}, 2 \times$ $13-\mathrm{H}), 0.9\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.89(3 \mathrm{H}, \mathrm{t}, J 7.3 \mathrm{~Hz}, 14-\mathrm{H})$, and $0.07(6$
$\left.\mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3} \mathrm{Si}\right) ; \quad m / z$ [Found: $321.1260\left(M^{+}-\mathrm{Bu}^{\mathrm{l}}\right)$. $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{ClO}_{4} \mathrm{Si}$ requires 321.1289], $321\left(M^{+}-\mathrm{Bu}^{\mathrm{l}}, 8.1 \%\right)$, 203(17), 185(13), 161(47), 131(41), 105(20), and 77(100).
(22) $R_{\mathrm{f}} 0.23(279 \mathrm{mg}, 59 \%)$; $v_{\text {max }}$ (thin film), $3480(\mathrm{OH}), 2980$, $2960,2900,2880,1480,1260,1100,1010,850$, and $780 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.85(1 \mathrm{H}, \mathrm{dd}, J 5.1$ and $12.2 \mathrm{~Hz}, 12-\mathrm{H})$, 3.78-3.72 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{e}}$ and 4- H_{e}), 3.67-3.62 ($3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{e}}, 8-\mathrm{H}_{\mathrm{e}}$ and $\left.2-\mathrm{H}_{\mathrm{a}}\right), 3.55\left(1 \mathrm{H}, \mathrm{dd}, J 7.7\right.$ and $\left.12.2 \mathrm{~Hz}, 12^{\prime}-\mathrm{H}\right), 3.5(1 \mathrm{H}, \mathrm{t}, J$ $11.3 \mathrm{~Hz}, 8-\mathrm{H}_{\mathrm{a}}$), $3.17(1 \mathrm{H}, \mathrm{d}, J 5.2 \mathrm{~Hz} \mathrm{OH}), 1.97-1.94(1 \mathrm{H}, \mathrm{m}, 3-$ $\left.\mathrm{H}_{\mathrm{e}}\right), 1.93\left(1 \mathrm{H}, \mathrm{dt}, J 3.7\right.$ and $\left.13.7 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{e}}\right), 1.74(1 \mathrm{H}, \mathrm{dt}, J 4.2$ and $\left.13.4 \mathrm{~Hz}, 11-\mathrm{H}_{\mathrm{a}}\right), 1.66-1.56\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{c}}\right), 1.52-1.43(1 \mathrm{H}$, $\left.\mathrm{m}, 9-\mathrm{H}_{\mathrm{a}}\right), 1.23\left(1 \mathrm{H}, \mathrm{qd}, J 12.4\right.$ and $\left.4.0 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{a}}\right), 1.16-1.03(2 \mathrm{H}$, $\mathrm{m}, 13-\mathrm{H}), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 0.86(3 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, 14-\mathrm{H})$, and 0.02 $\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3} \mathrm{Si}\right) ; \delta_{C}\left(90.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 98.7(\mathrm{~s}, \mathrm{CH}), 70.7(\mathrm{~d}$, CH), $66.8\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 66.1(\mathrm{~s}, \mathrm{CH}), 61.6\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 60.3(\mathrm{t}$, $\mathrm{CH}_{2} \mathrm{O}$), $45.0(\mathrm{~d}, \mathrm{CH}), 36.6(\mathrm{~d}, \mathrm{CH}), 26.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 25.9\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, $25.1\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, $24.1\left(\mathrm{t}, \mathrm{CH}_{2}\right), 11.0\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, and $-5.5\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{Si}\right)$; m / z (EI) [Found: $321.1278 \quad\left(M^{+}-\mathrm{Bu}^{t}\right) . \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{ClO}_{4} \mathrm{Si}$ requires 321.1289], 321(15\%), 277(10), 161(23), 129(30), 105(33), and $75(100)$.
$\left(3 S^{*}, 4 S^{*}, 5 S^{*}, 6 R^{*}, 9 R^{*}\right)-$ and $\left(3 S^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}, 9 R^{*}\right)-3-[(t-$ Butyldimethyl) siloxy]methyl-5-chloro-9-ethyl-1,7-dioxaspiro-[5.5]undecan-4-ol (24) and (23).-Using the procedure described above the olefinic spiroketal (20) ($3 S^{*}, 6 R^{*}, 9 R^{*}$)-3-[(t-butyldimethyl)siloxy]methyl-9-ethyl-1,7-dioxaspiro[5.5]-undec-4-ene ($247 \mathrm{mg}, 0.76 \mathrm{mmol}$) was chlorohydrated to give a mixture (1.4:1) of the chlorohydrins (23) and (24). Purification by flash chromatography (ether-light petroleum, 3:17) gave $\left(3 S^{*}, 4 S^{*}, 5 S^{*}, 6 R^{*}, 9 R^{*}\right)$ - and ($\left.3 S^{*}, 4 R^{*}, 5 R^{*}, 6 R^{*}, 9 R^{*}\right)-3-[(\mathrm{t}-$ butyldimethyl)siloxy]methyl-5-chloro-9-ethyl-1,7-dioxaspiro-[5.5]undecan-4-ol (24) ($71 \mathrm{mg}, \quad 25 \%$) and (23) (100 $\mathrm{mg}, \mathbf{3 5 \%}$) respectively as colourless oils (24); $v_{\text {max }}$ (thin film) 3510 (OH), 2970 sh, 2 940, $2880,2860,1470,1460,1110$, $1100,1035,1010$, and $840 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 3.97(1$ H , dd, $J 2.8$ and $10.8 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{e}}$), $3.85(1 \mathrm{H}, \mathrm{d}, J 10.8 \mathrm{~Hz}-\mathrm{OH}$), 3.79 $\left(1 \mathrm{H}, \mathrm{d}, J 2.7 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{e}}\right), 3.78(1 \mathrm{H}, \mathrm{dd}, J 11.5$ and $5.3 \mathrm{~Hz}, 12-\mathrm{H})$, $3.69\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{e}}\right), 3.69\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.6 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{e}}\right), 3.59(1$ $\left.\mathrm{H}, \mathrm{t}, J 11.5 \mathrm{~Hz}, 12^{\prime}-\mathrm{H}\right), 3.58\left(1 \mathrm{H}, \mathrm{t}, J 10.3 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{a}}\right), 3.33(1 \mathrm{H}, \mathrm{t}$, $\left.J 10.9 \mathrm{~Hz}, 8-\mathrm{H}_{\mathrm{a}}\right), 2.46\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{a}}\right), 2.05(1 \mathrm{H}, \mathrm{dm}, J 13.1$ $\left.\mathrm{Hz}, 11-\mathrm{H}_{\mathrm{c}}\right), 1.64\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{e}}\right), 1.71-1.39\left(3 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{a}}, 10-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.11-\mathrm{H}_{\mathrm{a}}\right), 1.42(2 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}), 0.84\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{l}}\right), 0.83(3 \mathrm{H}, \mathrm{t}, J$ $7.4 \mathrm{~Hz}, 14-\mathrm{H}$), and $0.02\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3} \mathrm{Si}\right) ; m / z(\mathrm{EI})$ [Found: $321.1259\left(M^{+}-\mathrm{Bu}^{4}\right) . \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{ClO}_{4} \mathrm{Si}$ requires 321.1289], 321(16\%) 185(7), 161(54), 131(35), and 129(14).
(23) $v_{\max }$ (thin film) $2980(\mathrm{OH}), 2960,2930,2880,2860$, $1465,1250,1095,1040,835$, and $775 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(360 \mathrm{MHz}$, CDCl_{3}), $3.89\left(1 \mathrm{H}, \mathrm{t}, J 9.9 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{a}}\right), 3.75(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and 5.5 $\mathrm{Hz}), 12-\mathrm{H}), 3.70-3.64\left(3 \mathrm{H}, \mathrm{m}, 12^{\prime}-\mathrm{H}, 8-\mathrm{H}_{\mathrm{c}}\right.$ and $\left.2-\mathrm{H}_{\mathrm{c}}\right), 3.53(1 \mathrm{H}$, $\left.\mathrm{d}, J 9.7 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{a}}\right), 3.44\left(1 \mathrm{H}, \mathrm{t}, J 11.5 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{a}}\right), 3.17(1 \mathrm{H}, \mathrm{t}, J 11.0$ $\left.\mathrm{Hz}, 8-\mathrm{H}_{\mathrm{a}}\right), 2.9(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.09(1 \mathrm{H}, \mathrm{dt}, J 12.4$ and $4.9 \mathrm{~Hz}, 11-$ $\left.\mathrm{H}_{\mathrm{a}}\right), 1.94\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{a}}\right), 1.62\left(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{e}}\right), 1.48\left(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{e}}\right.$ and $\left.9-\mathrm{H}_{\mathrm{a}}\right), 1.33\left(1 \mathrm{H}, \mathrm{dq}, J 12.4\right.$ and $\left.3.9 \mathrm{~Hz}, 10-\mathrm{H}_{\mathrm{a}}\right), 1.14-1.05(2$ $\mathrm{H}, \mathrm{m}, 13-\mathrm{H}), 0.85(3 \mathrm{H}, \mathrm{t}, J 8.4 \mathrm{~Hz}, 14-\mathrm{H}), 0.83\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$, and $0.33\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3} \mathrm{Si}\right)$; m / z (EI) [Found: $321.1164\left(\mathrm{M}^{+}-\right.$ Bu^{l}). $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{ClO}_{4} \mathrm{Si}$ requires 321.1289] 321(2.4\%), 203(100), 185(22), 129(21), 111(13), and 105(10).
($\left.3 S^{*}, 4 S^{*}, 6 R^{*}, 9 R^{*}\right)-3-[(t-$ Butyldimethyl $)$ siloxy $]$ methyl-9-ethyl-1,7-dioxaspiro[5.5]undecan-4-ol (27).-To a solution of the diequatorial chlorohydrin (23) ($145 \mathrm{mg}, 0.382 \mathrm{mmol}$) in dry toluene (8 ml) was added tributyltin hydride $(0.38 \mathrm{ml})$ and AIBN (10 mg) and the reaction heated to reflux under nitrogen for 3 h . On cooling to room temperature the reaction mixture was concentrated at reduced pressure and purified by flash chromatography to give ($3 S^{*}, 4 S^{*}, 6 R^{*}, 9 R^{*}$)-3-[t-butyldi-methyl)siloxy]methyl-9-ethyl-1,7-dioxaspiro[5.5]undecan-4ol (27) ($104 \mathrm{mg}, 79 \%$) as a white crystalline solid, m.p. 68.5-
$70.5^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3460(\mathrm{OH}), 2970,2940,2870,1465$, $1380,1260,1185,1090,1050,840$, and $780 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(360 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right), 4.02\left(1 \mathrm{H}\right.$, ddd, $J 10.6$ and $\left.5.1 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{a}}\right), 3.72-3.63(2 \mathrm{H}$, $\mathrm{m}, 12-\mathrm{H}$ and $\left.12^{\prime}-\mathrm{H}\right), 3.55\left(1 \mathrm{H}, \mathrm{dd}, J 11.3\right.$ and $4.8 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{e}}$), 3.43 $\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{c}}\right), 3.27\left(1 \mathrm{H}, \mathrm{t}, J 11.4 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{a}}\right), 3.19(1 \mathrm{H}, \mathrm{t}, J 10.9$ $\left.\mathrm{Hz}, 8-\mathrm{H}_{\mathrm{a}}\right), 2.0\left(1 \mathrm{H}, \mathrm{dd}, J 12.8\right.$ and $\left.5.1 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{e}}\right), 1.82(1 \mathrm{H}, \mathrm{m}, 3-$ $\left.\mathrm{H}_{\mathrm{a}}\right), 1.72-1.54\left(3 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{e}}, 11-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.10-\mathrm{H}_{\mathrm{a}}\right), 1.44-1.27(3 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}_{\mathrm{a}}, 9-\mathrm{H}_{\mathrm{a}}$ and $\left.10-\mathrm{H}_{\mathrm{a}}\right), 1.25-1.11(2 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}), 0.89(3 \mathrm{H}, \mathrm{t}$, $J 7.2 \mathrm{~Hz}, 14-\mathrm{H}), 0.81\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{1}\right)$, and $0.03\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3} \mathrm{Si}\right)$; $m / z(\mathrm{EI}) 345\left(M^{+}+\mathrm{H}, 23 \%\right), 327\left(\mathrm{M}^{+}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}, 100\right), 287$ ($M^{+}-\mathrm{Bu}^{\mathrm{t}}, 27$), 203(98), 185(26), 165(42), and 127(16).
$\left(3 S^{*}, 4 R^{*}, 6 R^{*}, 9 R^{*}\right)-3-[(t-$ Butyldimethyl $)$ siloxy $]$ methyl-9-ethyl-1,7-dioxaspiro[5.5]undecan-4-ol (28).-Using the procedure described above the diaxial chlorohydrin (24) $(55 \mathrm{mg}$, 0.14 mmol) was reduced to ($3 S^{*}, 4 R^{*}, 6 R^{*}, 9 R^{*}$)-3-[t-butyl-dimethyl)siloxy]methyl-9-ethyl-1,7-dioxaspiro[5.5]undecan-4ol (28) which was purified by flash chromatography (ether-light petroleum, 1:9) to give (28) ($35 \mathrm{mg}, 72 \%$) as a white crystalline solid, m.p. $41-42.5^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3520(\mathrm{OH}), 2970,2940$, $2880,1460,1390,1260,1180,1150,1100,1020,840$, and 780 $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 3.93(1 \mathrm{H}$, dddd, $J 9.9$ and 2.75 Hz , $4-\mathrm{H}_{\mathrm{e}}$), 3.73 ($1 \mathrm{H}, \mathrm{d}, J 9.9 \mathrm{~Hz}, \mathrm{OH}$), 3.71 (1 H , dd, $J 11.5$ and 5.8 $\mathrm{Hz}, 12-\mathrm{H}), 3.67\left(1 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and $\left.5.8 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{e}}\right), 3.60(1 \mathrm{H}, \mathrm{t}, J$ $\left.11.7 \mathrm{~Hz}, 12^{\prime}-\mathrm{H}\right), 3.61-3.58\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{e}}\right), 3.53(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and $\left.8.4 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{a}}\right), 3.31\left(1 \mathrm{H}, \mathrm{t}, J 10.9 \mathrm{~Hz}, 8-\mathrm{H}_{\mathrm{a}}\right), 1.9(1 \mathrm{H}, \mathrm{m}$, $\left.3-\mathrm{H}_{\mathrm{a}}\right), 1.89\left(1 \mathrm{H}, \mathrm{dd}, J 14\right.$ and $\left.3 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{e}}\right), 1.66-1.62(2 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}_{\mathrm{a}}$ and $\left.10-\mathrm{He}\right), 1.6-1.52\left(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.11-\mathrm{H}_{\mathrm{e}}\right), 1.49-1.38$ $\left(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.11-\mathrm{H}_{\mathrm{a}}\right), 1.19-1.1(2 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}), 0.84(9 \mathrm{H}, \mathrm{s}$, Bu^{l}), $0.83(3 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, 14-\mathrm{H})$, and $0.02\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3} \mathrm{Si}\right)$; $m / z\left(\mathrm{Cl}, \mathrm{NH}_{3}\right) 287\left(M^{+}-\mathrm{Bu}^{\mathrm{t}}, 53 \%\right), 243$ (10), 195(12), 161(33), 105(28), and 75(100).
$\left(3 R^{*}, 4 S^{*}, 6 R^{*}, 9 R^{*}\right)-3-[(t-$ Butyldimethyl $)$ siloxy $]$ methyl-9-ethyl-1,7-dioxaspiro[5.5]undecan-4-ol (25).-Using the procedure described above the diequatorial chlorohydrin (21) (60 $\mathrm{mg}, 0.16 \mathrm{mmol})$ was reduced to $\left(3 R^{*}, 4 S^{*}, 6 R^{*}, 9 R^{*}\right)-3-[(\mathrm{t}-$ butyldimethyl)siloxy]methyl-9-ethyl-1,7-dioxaspiro[5.5]-undecan-4-ol give (25) which was purified by flash chromatography (ether-light petroleum, 2:8) to give (25) ($28 \mathrm{mg}, 52 \%$) as a white crystalline solid, m.p. $56-58{ }^{\circ} \mathrm{C}$; $v_{\max }\left(\mathrm{CHCl}_{3}\right), 3440$ (OH), $2970,2940,2870,2870,1465,1380,1260,1$ 190, 1100 , $1080,905,840$, and $780 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 4.18(1 \mathrm{H}$, dddd, $J 5,7.1$ and $\left.14 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{a}}\right), 4.12(1 \mathrm{H}, \mathrm{t}, J 10.1 \mathrm{~Hz}, 12-\mathrm{H})$, $3.87(1 \mathrm{H}, \mathrm{d}, J 7.1 \mathrm{~Hz}, \mathrm{OH}), 3.73(1 \mathrm{H}$, dd, $J 10.4$ and 5.6 Hz , $\left.12^{\prime}-\mathrm{H}\right), 3.62\left(1 \mathrm{H}, \mathrm{dd}, J 11.6\right.$ and $\left.2.6 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{e}}\right), 3.54(1 \mathrm{H}, \mathrm{m}$, $\left.8-\mathrm{H}_{\mathrm{e}}\right), 3.48\left(1 \mathrm{H}, \mathrm{d}, J 11.6 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{a}}\right), 3.09(1 \mathrm{H}, \mathrm{t}, J 10.9 \mathrm{~Hz}$, $\left.8-\mathrm{H}_{\mathrm{a}}\right), 2.09\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{e}}\right), 1.84\left(1 \mathrm{H}, \mathrm{dd}, J 12.9\right.$ and $\left.4.9 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{e}}\right)$, $1.62-1.47\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{a}}, 10-\mathrm{H}_{\mathrm{c}}\right.$ and $\left.11-\mathrm{H}_{\mathrm{e}}\right), 1.53-1.35(3 \mathrm{H}, \mathrm{m}, 10-$ $\mathrm{H}_{\mathrm{a}}, 9-\mathrm{H}_{\mathrm{a}}$ and $11-\mathrm{H}_{\mathrm{a}}$), 1.12-1.01 ($\left.2 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}\right), 0.9\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{1}\right)$, $0.86(3 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, 14-\mathrm{H})$, and $0.09\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3} \mathrm{Si}\right)$; m / z (Found: $M^{+}-\mathrm{Bu}^{\mathrm{t}}, 287.1645 . \mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Si}$ requires 287.1679), $287\left(M^{+}-\mathrm{Bu}^{\mathrm{t}} 8 \%\right), 269\left(M^{+}-\mathrm{Bu}^{+}+\mathrm{H}_{2} \mathrm{O}, 13\right)$, 157(7), and 127(22).
($\left.3 R^{*}, 4 R^{*}, 6 R^{*}, 9 R^{*}\right)-3-[(t-$ Butyldimethyl $)$ siloxy $]$ methyl-9-ethyl-1,7-dioxaspiro[5.5]undecan-ol (26).-Using the procedure described above the diaxial chlorohydrin (22) $(200 \mathrm{mg}, 0.52$ mmol) was reduced to ($\left.3 R^{*}, 4 R^{*}, 6 R^{*}, 9 R^{*}\right)-3-[(\mathrm{t}$-butyldi-methyl)siloxy]methyl-9-ethyl-1,7-dioxaspiro[5.5]undecan-4-ol (26) which was purified by flash chromatography (ether-light petroleum, $3: 17$) to give (26) ($105 \mathrm{mg}, 59 \%$) as a white crystalline solid, m.p. $45-46.5^{\circ} \mathrm{C} ; v_{\max }\left(\mathrm{CHCl}_{3}\right) 3530(\mathrm{OH})$, 2970,2 940, $2870,1470,1370,1260,1240,1100,860,840$, and $780 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 4.10(1 \mathrm{H}, \mathrm{d}, J 9.7 \mathrm{~Hz}, \mathrm{OH}), 3.99$ ($1 \mathrm{H}, \mathrm{dd}, J 12.1$ and $3.3 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{c}}$), $3.95\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{c}}\right), 3.70(1 \mathrm{H}$, dd, $J 10.1$ and $7.7 \mathrm{~Hz}, 12-\mathrm{H}), 3.61(1 \mathrm{H}, \mathrm{dd}, J 10.9$ and $2.0 \mathrm{HZ}, 8-$ H_{e}), $3.61\left(1 \mathrm{H}, \mathrm{dd}, J 10.2\right.$ and $\left.8.0 \mathrm{~Hz}, 12^{\prime}-\mathrm{H}\right), 3.53(1 \mathrm{H}, \mathrm{d}, J 12.9$
$\mathrm{Hz}, 2-\mathrm{H}_{\mathrm{a}}$), $3.31\left(1 \mathrm{H}, \mathrm{t}, J 10.9 \mathrm{~Hz}, 8-\mathrm{H}_{\mathrm{a}}\right), 1.84\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{e}}\right), 1.75$ $\left(1 \mathrm{H}, \mathrm{dd}, J 15.0\right.$ and $\left.3.1 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{e}}\right), 1.71-1.58\left(3 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{e}}\right.$, $10-\mathrm{H}_{\mathrm{c}}$ and $\left.5-\mathrm{H}_{\mathrm{e}}\right), 1.52-1.36\left(3 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{a}}, 10-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.9-\mathrm{H}_{\mathrm{a}}\right)$, 1.18-1.12 ($2 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}$), 0.88 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{l}}$), 0.87 ($3 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}$, 14-H), and $0.05\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3} \mathrm{Si}\right)$; m / z [Found: 287.1669. $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{Si}\left(M^{+}-\mathrm{Bu}^{1}\right)$ requires 287.1679), $327\left(M^{+}-\mathrm{H}_{2} \mathrm{O}\right.$, 22%), 287 ($M^{+}-\mathrm{Bu}^{+}, 26$), 269(24), 203(21), 185(12), 165(16), 127(34), and 75(100).
($3 S^{*}, 4 S^{*}, 6 R^{*}, 9 R^{*}$)-9-Ethyl-3-hydroxymethyl-1,7-dioxaspiro-[5.5]undecan-4-ol (2) (Talaromycin B).-To the spiroketal (27) ($96.4 \mathrm{mg}, 0.28 \mathrm{mmol}$) in dry THF (2 ml) was added a solution of tetrabutylammonium fluoride in THF ($0.7 \mathrm{ml} ; 1.0 \mathrm{~m}$) and stirred at room temperature for 2 h . Concentration of the reaction mixture at reduced pressure afforded the crude product which was purified by column chromatography (silica; methanoldichloromethane, 3:97) to give talaromycin $\mathbf{B}(2)(51.7 \mathrm{mg}$, 80%) as white crystals m.p. $129.7-130.5^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane, 1:3) (lit., ${ }^{4 \mathrm{e}} 127-128^{\circ} \mathrm{C}$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) 3420 \mathrm{~s}(\mathrm{OH})$, 2 960, 2 930, $2870,1470,1380,1$ 155, $1090,1080,1030$, and $845 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 4.07(1 \mathrm{H}, \mathrm{dt}, J 10.6$ and 5 Hz , $4-\mathrm{H}_{\mathrm{a}}$), $3.71(2 \mathrm{H}, \mathrm{d}, J 5.9 \mathrm{~Hz}, 12-\mathrm{H}), 3.58(1 \mathrm{H}, \mathrm{dd}, J 11.6$ and 1.2 $\mathrm{Hz}, 2-\mathrm{H}_{\mathrm{e}}$), $3.51\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{e}}\right), 3.31\left(1 \mathrm{H}, \mathrm{t}, J 10.9 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{a}}\right), 3.19$ $\left(1 \mathrm{H}, \mathrm{t}, J 10.9 \mathrm{~Hz}, 8-\mathrm{H}_{\mathrm{a}}\right), 2.72-2.62(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.99(1 \mathrm{H}, \mathrm{dd}$, $J 12.6$ and $4.9 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{e}}$), $1.86-1.74\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{a}}\right), 1.62-1.51(3$ $\mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{e}}, 11-\mathrm{H}_{\mathrm{a}}$ and $\left.10-\mathrm{H}_{\mathrm{e}}\right), 1.45-1.27\left(3 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}_{\mathrm{a}}, 9-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.5-\mathrm{H}_{\mathrm{a}}\right), 1.21-1.11(2 \mathrm{H}, \mathrm{m}, 13-\mathrm{H})$, and $0.88(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}$, 14-H); m / z (EI) $231\left(M^{+}+\mathrm{H}, 12 \%\right.$), 218 ($\mathrm{M}^{+}-\mathrm{OH}, 26$), 183(13), 147(100), 143(53), 129(88), 125(82), 111(39), 96(51), 83(46), and 69(68).
($3 S^{*}, 4 R^{*}, 6 R^{*}, 9 R^{*}$)-9-Ethyl-3-hydroxymethyl-1,7-dioxaspiro-[5.5]undecan-4-ol (5) (Talaromycin E).-The spiroketal (5) talaromycin E, was prepared from (28) $(\mathbf{4 6 . 3} \mathrm{mg}, 0.134 \mathrm{mmol})$, as described above, in 72% yield and was purified by column chromatography ($\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2: 98$) and obtained as a colourless oil; $v_{\max }($ thin film) $3500(\mathrm{OH}), 3360(\mathrm{OH}), 2960$, $2930,2870,1465,1180,1150,1090,1025$, and $860 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(\mathbf{3 6 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 4.05(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.81(1 \mathrm{H}, \mathrm{t}, J 12 \mathrm{~Hz}$, $2-\mathrm{H}_{\mathrm{e}}$), 3.69 ($1 \mathrm{H}, \mathrm{dd}, J 11.2$ and $4.5 \mathrm{~Hz}, 12-\mathrm{H}$), 3.62 ($1 \mathrm{H}, \mathrm{dd}, J$ 11.2 and $5.4 \mathrm{~Hz}, 12-\mathrm{H}), 3.60-3.54\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{e}}\right), 3.53(1 \mathrm{H}, \mathrm{m}, 8-$ $\left.\mathrm{H}_{\mathrm{e}}\right), 3.29-3.22\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.8-\mathrm{H}_{\mathrm{a}}\right), 1.82(1 \mathrm{H}, \mathrm{d}, J 14 \mathrm{~Hz}$, $5-\mathrm{H}_{\mathrm{e}}$), 1.76-1.68 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{a}}$), 1.61-1.51 ($\mathbf{3} \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{e}}, 5-\mathrm{H}_{\mathrm{a}}$ and $\left.10-\mathrm{H}_{\mathrm{e}}\right), 1.40-1.28\left(3 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}_{\mathrm{a}}\right.$ and $10-\mathrm{H}_{\mathrm{a}}$ and $\left.11-\mathrm{H}_{\mathrm{a}}\right), 1.13-$ $1.0(2 \mathrm{H}, \mathrm{m}, 13-\mathrm{H})$, and $0.8(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, 14-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (EI) 231 ($\left.M^{+}+\mathrm{H}, 40 \%\right), 213(100), 147(82), 129(87), 126(80), 111(34)$, 96(30), and 83(36).
($3 R^{*}, 4 S^{*}, 6 R^{*}, 9 R^{*}$)-9-Ethyl-3-hydroxymethyl-1,7-dioxaspiro-[5.5]undecan-4-ol (1) (Talaromycin A).-Talaromycin A (1) was prepared from (20) ($18 \mathrm{mg}, 0.052 \mathrm{mmol}$), as described above, in 68% yield, and was purified by column chromatography ($\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3: 97$) and obtained as a clear oil; $v_{\text {max }}($ thin film) $3350(\mathrm{OH}), 2980,2940,2880,1460,1185$, 1060,895 , and $870 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 4.40(1 \mathrm{H}, \mathrm{dt}, J$ 11.7 and $\left.5.8 \mathrm{~Hz}, 4-\mathrm{H}_{\mathrm{z}}\right), 4.20(1 \mathrm{H}, \mathrm{dd}, J 11$ and $9.0 \mathrm{~Hz}, 12-\mathrm{H}), 3.80$ $\left(1 \mathrm{H}, \mathrm{dd}, J 11.0\right.$ and $\left.5 \mathrm{~Hz}, 12^{\prime}-\mathrm{H}\right), 3.74(1 \mathrm{H}, \mathrm{dd}, J 11.8$ and 2.9 Hz , $\left.2-\mathrm{H}_{\mathrm{a}}\right), 3.58\left(1 \mathrm{H}, \mathrm{dd}, J 11.8\right.$ and $\left.1.3 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{e}}\right), 3.52\left(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{\mathrm{c}}\right.$, $3.19\left(1 \mathrm{H}, \mathrm{t}, J 10.9 \mathrm{~Hz}, 8-\mathrm{H}_{\mathrm{a}}\right), 2.83(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.15(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}_{\mathrm{e}}$), 1.89 ($1 \mathrm{H}, \mathrm{dd}, J 12.9$ and $7.8 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{c}}$), $1.72(1 \mathrm{H}, \mathrm{t}, J 12.7$ $\left.\mathrm{Hz}, 5-\mathrm{H}_{\mathrm{a}}\right), 1.71-1.66\left(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{e}}\right), 1.64-1.60\left(1 \mathrm{H}, \mathrm{dm}, 10-\mathrm{H}_{\mathrm{e}}\right)$, 1.55-1.31 ($3 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{a}}, 10-\mathrm{H}_{\mathrm{a}}$ and $9-\mathrm{H}_{\mathrm{a}}$), 1.21-1.07 $(2 \mathrm{H}, \mathrm{m}$, $13-\mathrm{H})$, and $0.88(3 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, 14-\mathrm{H}) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 231$ ($\left.M^{+}+H, 36 \%\right), 213(100), 147(28), 129(22)$, and 126(15).
($3 R^{*}, 4 R^{*}, 6 R^{*}, 9 R^{*}$)-9-Ethyl-3-hydroxymethyl-1,7-dioxaspiro-[5.5]undecan-4-ol (3) (Talaromycin C).-Talaromycin C (3) was prepared from (26) ($142 \mathrm{mg}, 0.41 \mathrm{mmol}$), as described above, in 60% yield, and was purified by column chromatography ($\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2: 98$) and obtained as a clear oil: $v_{\max }($ thin film) $3500-3300(\mathrm{OH}), 2960,2920,2880,1465$, $1380,1155,1080$, and $850 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 4.14(1$ H , br d, $J 8.9 \mathrm{~Hz}, 4-\mathrm{OH}$), $3.94\left(1 \mathrm{H}\right.$, dd, $J 12.1$ and $3.0 \mathrm{~Hz}, 2-\mathrm{H}_{\mathrm{e}}$), $3.87\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{e}}\right), 3.64\left(1 \mathrm{H}, \mathrm{dd}, J 10.7\right.$ and $7.8 \mathrm{~Hz}, 8-\mathrm{H}_{\mathrm{e}}$), $3.57-$ $3.5\left(3 \mathrm{H}, \mathrm{m}, 2 \times 12-\mathrm{H}\right.$ and $\left.2-\mathrm{H}_{\mathrm{a}}\right), 3.23\left(1 \mathrm{H}, \mathrm{t}, J 10.7 \mathrm{~Hz}, 8-\mathrm{H}_{\mathrm{a}}\right)$, $2.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 12-\mathrm{OH}), 1.9-1.88\left(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{\mathrm{e}}\right), 1.69-1.64(2 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}_{\mathrm{e}}$ and $10-\mathrm{H}_{\mathrm{e}}$), 1.61-1.50 $\left(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{e}}\right.$ and $\left.5-\mathrm{H}_{\mathrm{a}}\right), 1.45-$ $1.21\left(3 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}_{\mathrm{a}}, 10-\mathrm{H}_{\mathrm{a}}\right.$ and $\left.9-\mathrm{H}_{\mathrm{a}}\right), 1.17-1.0(2 \mathrm{H}, \mathrm{m}, 13-\mathrm{H})$, and $0.80(3 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, 14-\mathrm{H}) ; m / z(\mathrm{EI}) 231\left(M^{+}+\mathrm{H}, 18 \%\right)$, 213(53), 147(100), 129(83), 111(40), 96(37), 83(39), and 69(49).

Acknowledgements

We gratefully acknowledge financial support from the SERC and a CASE Award from Sigma Chemical Company Ltd (Poole).

References

1 D. G. Lynn, N. J. Phillips, W. C. Hutton, J. Shabanowitz, I. Fennell, and R. J. Cole, J. Am. Chem. Soc., 1982, 104, 7319.
2 N. J. Phillips, R. J. Cole, and D. G. Lynn, Tetrahedron Lett., 1987, 28, 1619.

3 (a) A. B. Smith and A. S. Thompson, J. Org. Chem., 1984, 49, 1469; (b) M. M. Midland and J. Gabriel, J. Org. Chem., 1985, 50, 1143; (c) K. Mori and M. Kunaka, Tetrahedron, 1987, 43, 45; (d) C. Iwata, M. Fujita, Y. Moritani, K. Hattori, and T. Imanishi, Tetrahedron Lett., 1987, 27, 3135; (e) M. T. Crimmin and R. O'Mahony, J. Org. Chem., 1989, 54, 1157.
4 (a) S. L. Schreiber, T. J. Sommer, and K. Satake, Tetrahedron Lett., 1985, 26, 17; (b) S. L. Schreiber and T. J. Sommer, Tetrahedron Lett., 1983, 24, 4781; (c) A. P. Kozikowski and J. G. Scripto, J. Am. Chem. Soc., 1984, 106, 353; (d) P. Kocienski and C. Yeates, J. Chem. Soc., Perkin Trans. 1, 1985, 1987; (e) I. T. Kay and D. Bartholomew, Tetrahedron Lett., 1984, 25, 2035.
5 (a) R. Whitby and P. Kocienski, J. Chem. Soc., Chem. Commun., 1987, 906; (b) K. Mori and I. Masaya, Agric. Biol. Chem., 1987,51, 565.
6 A. F. Kluge, Heterocycles, 1986, 24, 1699.
7 T. L. B. Boivin, Tetrahedron, 1987, 43, 3309.
8 R. Baker, C. J. Swain, and J. C. Head, J. Chem. Soc., Chem. Commun., 1985, 309.
9 A. H. Dekmezian and M. K. Kaloustian, Synth. Commun., 1979, 9, 431.

10 A. J. Mancuso, S. L. Huang, and D. Swern, J. Org. Chem., 1978, 43, 2480.

11 E. J. Corey and P. L. Fuchs, Tetrahedron Lett., 1972, 3769.
12 H. A. Bates, J. Farina, and M. Tong, J. Org. Chem., 1986, 51, 2637.
13 M. E. Kuehne, C. L. Kirkemo, T. H. Matsko, and J. C. Bonhert, J. Org. Chem., 1980, 45, 3259.

14 R. Baker and R. H. Herbert, J. Chem. Soc., Perkin Trans. 1, 1987, 1123; R. Baker, R. H. Herbert, and A. H. Parton, J. Chem. Soc., Chem. Commun., 1982, 601.
15 E. J. Corey and A. Venkateswarlu, J. Am. Chem. Soc., 1972, 94, 6190.
16 D. R. Williams, B. A. Barner, K. Nishitani, and J. G. Phillips, J. Am. Chem. Soc., 1982, 104, 4708.
17 P. Block, Jr., Org. Syn., Coll. Vol. 5, 381.

Paper 9/03324F
Received 4th August 1989 Accepted 17th October 1989

